TIEplus 2020 Subject

> The diagram below describes a simplified architecture of an augmented reality headset system divided in 3 functional modules: *Processing Module*, *Light-Control* and *Picture-Projection*.

- > The challenge is to design the critical electrical connections within the *Light-Control Engine* and *Picture-Projection* modules, which together form the **Picture Generation Unit (PGU)**.
- > The entire system will be designed on a single PCB in rigid-flex technology with Polymide based substrate for the flexible areas.

TIEplus 2020 Schematic

TIEplus 2020 Requirements

A) Signal Integrity of the Sub-LVDS video interface

1. Based on the provided PCB stack-up provided in figure 2, define the routing directives and strategy for the Sub-LVDS video interface. This includes selecting the routing layers, trace width and spacing, inter-pair spacing and layer transitions.

2. Define a differential via design pattern to match the differential pair routing impedance.

3. Evaluate intra-pair skew requirements and define length matching restrictions.

4. Route the Sub-LVDS lines and associated reference planes in a CAD environment considering the component placement in figure 3.

5. Evaluate signal quality.

- 6. Evaluate interface timing.
- 7. Optimize routing if necessary.

TIEplus 2020 Requirements

B) Power Integrity of the 1V1 Core Supply Rail

1. Analyze the thermal distribution of the **PGU** board based on equivalent thermal network provided in figure 4.

2. Evaluate noise budget and define DC drop and AC design targets.

- 3. Define power supply rail routing directives.
- 4. Define capacitor decoupling network based on AC design target.

5. Route the power rails for 1V1 and GND (including capacitor network) in a CAD environment, considering the component placement in figure 3.

6. Evaluate PDN performance (post-layout) using appropriate simulations in both DC and AC domains. Optimize layout to meet design targets.

* Consider the thermal distribution impact on PCB and component performance for the power integrity analysis.

*Use capacitor models from Murata MLCC lineup (<u>www.murata.com</u>) *Only capacitors with 0402, 0603 and 0805 case type must be used for decoupling

TIEplus 2020 Modeling Information

Model	File	Notes					
DLPA2020 VRM Model	-	VRM model provided in slide 6					
DLPC2020 IBIS	DLPC2020.ibs						
DLP2020 IBIS	DLP2020.ibs	IBIS model does not contain internal differential termination resistor					
DLPA2020 Datasheet	DLPA2020.pdf						
DLPC2020 Datasheet	DLPC2020.pdf						
DLP2020 Datasheet	DLP2020.pdf						
PCB Stack-up	-	Stack-up provided in slide 7					
X3000 socket	AXT540124.pdf						
Datasheet & Simulation model	AXT540124.s40p	Model pinout provided in slide 10					

TIEplus 2020 DLPA2020 – VRM Modeling

- > Output Voltage: 1.1 [V] (net +1V1-OUT)
- > Output Switching Ripple: 10 [mVpp]
- > DC output voltage accuracy: ±1.5%
- > Power Dissipation: 1.6W

TIEplus 2020 PCB Stack-up

							Dk			Df		
Figure 2	Through Hole Via 1-6			Nominal Thickness [um]	Final Thickness (after pressing)	Туре	1MHz	1GHz	10GHz	1MHz	1GHz	10GHz
	d=200um	Flexible Region	TOP Side		-							
				20	20	Solder Mask		3.8				
Component / Signal 1				43	43	18um copper + plating						
				114	114	2116 type Prepreg		4.25	4.13		0.0156	0.0186
GND 2				18	18	18um base copper						
		← channel width → 11.9 mm		914	914	36 mil FR4 CORE		4.47	4.34		0.0147	0.0175
Signal 3				18	18	18um base copper						
				114	105	2116 type Prepreg		4.25	4.13		0.0156	0.0186
		Coverlay + Adhesive		75	75	Polyimide Adhesive prepreg (no flow)	3.2		3.2	0.0015		0.0015
GND <mark>4</mark>		Copper		18	18	18um base copper						
		Adhesive		50	50	Polyimide Adhesive	3.2		3.2	0.0015		0.0015
		Polymide		25	25	Polymide Laminate	3.4		3.2	0.002		0.003
Signal <mark>5</mark>		Copper		18	18	18um base copper						
		Adhesive		75	66	Polyimide Adhesive	3.2		3.2	0.0015		0.0015
		Polymide		25	25	Polymide Laminate	3.4		3.2	0.002		0.003
Power 6		Copper		43	43	18um base copper + plating	3.2		3.2	0.0015		0.0015
			BOTTOM Side	1595	1577	leovenay	3.2		5.2	0.0013		0.0013

1577

TIEplus 2020 CAD Drawing

Notes:

- Only the following components are mandatory for layout design: IC1000, IC2000, X3000(socket)
- Placement for IC1000 and IC2000 is fixed based on fig. 3
- 1V1 routing only allowed on outer layers
- > All dimension in millimeters

20.5 16.5 Figure 3 2 10 + -IC3000 S Top View Bottom View 11.9 10 6.75 Scale: 2:1 Scale: 2:1 Œ \oplus 7 29.25 ball A1 20.45 16.75 pin 1 IC1000 IC2000 \odot 24.35 18.75 35.75 3.2 41

34.5

 \odot

 \oplus

TIEplus 2020 Thermal Network

TIE

Notes on thermal modeling:

- DLPC2020 power dissipation must be calculated based on datasheet values considering power supply inputs; the value has a strong dependence on the junction temp)
- DLPA2020 power dissipation is fixed at 1.6W
- For modeling simplification, the PCB temperature can be considered uniform.

Figure 4 Amb. $R_{th conv C} \leq 50 \text{ K/W}$ Amb. R_{th conv C} <65 K/W $R_{th J-C} \leq 11.5 \text{ K/W}$ $R_{th J-C} \ge$ DLPC Pd=temp. 25.6 K/W 2020 dependent DLPA Pd= 1.6W R_{th J-PCB} >26.7 K/W 2020 constant R_{th J-PCB} S 4.9 K/W PCB R_{th PCB-Amb} Amb.

 Maximum ambient temperature: 55°C

Ontinental 🄧

TIEplus 2020 X3000 Touchstone model pinout

