

UNIVERSITATEA DIN PITESTI

1. General description of the project:

The purpose of this project is to design one **wearable**, **biometric monitoring system** which will be used in blockchain-type wallet authentification process. The monitoring system is comprised from several sensors placed in pre-determined areas of the PCB, one processing unit(microcontroller), one bluetooth module and a wireless charging coil.

The schematic of the proposed project is indicated in ANNEX_1.

The system description is as following:

In order to function properly, our system needs to examine periodically, unique biometrical data in a fixed pre-determined time frame, in order to generate one individual and specific key string, to make the authentification process valid. To make this happen, the following were used:

- → One pulse oximeter sensor, responsible for a noninvasive pulse and arterial oxygen saturation measurement. This sensor will be activated once every 1h or when the accelerometer will detect prolonged user physical activity. (See datasheet for technical specifications of DCM03).
- ➔ In order to properly detect and mediate quantitatively the physical activity of the user, one accelerometer sensor is needed.

The placement of this sensor is limited only by the volume given by the casing and it's a matter of designer's personal choice. (See datasheet for technical specifications TIE2018_DIG_MIC_GYRO).

- → One digital microphone, which sole purpose is to capture the unique characteristics of user's voice. This component should be placed as close as possible to the processing unit. (See datasheet for technical specifications TIE2018_DIG_MIC_GYRO). Both accelerometer sensor and digital microphone are part of the same component.
- → Because this PCB will be fitted in a water-proof enclosure, the gadget will communicate with the exterior through a bluetooth module (SoC system on chip). The participant should carefully think and place this module because it has one embedded antenna, which will add more specific design constraints. (See datasheet for technical specifications TIE2018_SoC).
- → All the sensor data acquistions and communication will be handled by one microcontroller, which will be placed in the central rigid PCB area. (See datasheet for technical specifications TIE_2018_WPC_AFE).
- → The whole system will be powered by one Lithium-Ion polymer based rechargeable battery, which will be connected by wires on the PCB. This battery will have temperature monitoring to allow fast charging capabilites.

2. General requirements:

GEN-001	The design order is mandatory: libraries, schematic design, transfer procedure, layout design
	and postprocessing activities.
GEN-002	All dimensions shall be considered in mm.

Due to the complexity of this monitoring unit, and the lack of space available, the unit must be designed using one *rigid-flex PCB*. It is comprised of *two rigid sides*, one containing the bluetooth module and some of the sensors and and the other containing the processing unit and adjacent components.

The two buttons, the NTC, the pulse oximeter and the charging coil will be placed on flexible areas. Everything will be placed in an enclosed, rubber-made, water-tight housing:

!! All the relevant mechanical and placement keep-in/out's can be found in the mechanical annexes(ANNEX_2, ANNEX_2_3D), in the contest documentation folders!! <u>To create the PCB outline, the participants have two options:</u>

- 1. To import the attached .dxf/.idf file which contain the mechanical data PCB outline. Pay attention to the import options and on what layer does the tool place the imported data. At the end, the outline must correspond to the proper layer or the information will be considered useless by the evaluators.
- 2. To create the outline manually as described below:

3. Schematic design specifications:

SCH-001	The schematic project will be created using any CAD system accepted in the contest (and respects all the minimum requirements published on the TIE official website).			
SCH-002	The required components (U100, U200, U300, U400, U600, PB300) must be created in a new library named TIE2018.			
SCH-003	The schematic must be drawn in a clear manner, e.g.: all references and values must have			
	proper size and orientation, un-necessary crossings shall be avoided, no overlap of texts,			
	graphical elements and electrical objects is allowed.			
SCH-004	The schematic must be electrically correct, clean and readable. All reference designators and			
	values must strictly follow Annex_1, footprint naming and other text elements are not			
	mandatory. The main purpose is to generate a correct netlist for PCB design, but it must also			
	provide a clear representation of functionality.			
SCH-005	Test pads must be placed on the following nets (1 test pad per net): SWD_IO, RESET,			
	SWD_CLK, 3V3 and GND for programing.			
SCH-006	Following completion of the schematic, a <i>Bill of Material (BOM)</i> must be generated.			
SCH-007	The same page size and count shall be used as the one received in Annex 1.			

4. Layout design specifications:

Figure 4. Proposed stack-up definition for the thermal monitoring system.

PCB-001	The PCB layout design will take into consideration the proposed stack-up from <i>Figure 4</i> . Each				
	participant should define in their individual CAD software only the rigid stack-up definiton.				
	Minimum trace width is 0.100mm and minimum clearance is 0.100mm .				
PCB-002	Signal routing will be done on top and bottom layers. <i>Inner layer_1</i> and <i>Inner layer_2</i> will be				
	used for <i>power signals(GND and 3V3)</i> . Interconnects on flex foil mustbe routed on the layers				
	indicated in the proposed stack-up definition table (Fig.4).				
PCB-003	Component descriptions, including standard footprints are indicated directly in the ANNEX_3.				
	Non-standard footprints (components which have the manufacturer part number TIE2018)				
	indicated in <i>Table 1</i> , (<i>Column 3</i>), must be designed as specified in the provided datasheets and				
	saved in the TIE2018 Library. All footprints must have proper definition for copper pads,				
	component outline and silk screen.				
PCB-004	All VIA will have the following properties:				
	Signal VIA: 200μm hole diameter and 400μm copper pad				
	Dever VIA:300µm hole diameter and 600µm copper pad				
PCB-005	In order to have the desired functionalities, all user interface components must be precisely				
	placed, as indicated in the mechanical documentation (ANNEX_2). Component coordinates				
	refer to the geometrical center.				
PCB-006	The PCB origin shall be placed in the middle of the 2mm NPTH (#A).				
PCB-007	Minimum distance between two adjacent components is $400\mu m$ (component outline to				
	component outline), and pad to pad 250µm.				

PCB-008	On flexible areas, due to manufacturing requirements the routing will be done with <i>rounded</i>				
	traces. Also, if layer transitions are needed (via usage is mandatory) it is absolutely a must to				
	use <i>teardrops</i> in order to prevent trace-to-via detachments.				
PCB-009	To mechanically enhance the flexibility of the PCB, please insert, in the bendable areas, where				
	there are no traces present or copper areas connected to any net, any kind of <i>homogenous</i>				
	<i>copper hatch</i> . The pattern choosing may be either one available.				
PCB-010	The Pulse Oximeter Sensor will be placed as indicated in the mechanical drawing (ANNEX_2)				
	on bottom side.				
PCB-011	For soldering the wireless power charging receiver coil, two copper pads of minimum				
	1.5x1.5mm(1mm edge-to-edge spacing) will be placed at distance 5mm below the Pulse				
	Oximeter Sensor on the same side.				
PCB-012	The Lithium-Ion Battery will be soldered on two copper pads of minimum 1.5x1.5mm (1mm				
	edge-to-edge spacing) placed on Rigid Region A on the same side as Pulse Oximeter Sensor.				
PCB-013	TIE2018_SoC shall have a keep-out area under the antenna, free of copper of minimum				
	2.5x13mm.				
PCB-014	Signals: AC1 and AC2 will be routed in a parallel manner, having 400µm trace width and a				
	spacing of maximum 250µm. Total length of any trace must not exceed 70mm!				
PCB-015	Signals: { <i>RX_N</i> , <i>RX_P</i> },{ <i>TX_N</i> , <i>TX_P</i> } are 100 differential pair signals. The routing shall				
	be done with a trace width of 110µm and 120µm spacing. Differential signals shall have their				
	corresponding shield and return path (RX_REF and TX_REF). The length of any differential				
	pair must not exceed 35mm.				
PCB-016	SPI interface (SPI_SIMO, SPI_SOMI, SPI_CLK, SPI_EN) traces shall be routed as bus,				
	length shall not exceed 60mm and must have a reference.				
PCB-017	Signals ANTIN and ANTOUT, are single ended 50 impedance, and must be routed with				
	<i>220µm</i> trace width.				
PCB-018	I2C interface signals must be routed as <i>short as possible</i> so the user shall be careful about				
	critical component placement.				
PCB-019	Decoupling capacitors and AC coupling capacitors must be properly placed.				

5. Thermal considerations:

THERM-	To prevent battery over-heating, a temperature monitoring thermistor will be used as indicated
001	on the mechanical drawing. NTC signals will be routed with 300µm traces, spaced at 250µm.
THERM-	Calculate junction temperature for <i>U100</i> considering R JA = 37.7°C/W and dissipated power
002	(Pd) is <i>300mW</i> . See <i>ANNEX_4</i> for more details.
THERM-	In order to properly cool U100, place a suitable number of thermal VIAs close to pins 40 and 44.
003	Thermal resistance of one VIA is 43.8°C/W and minimum required thermal resistance of the
	obtained VIA cluster is 8.1°C/W.

6. Test specifications:

TST-001	Test pads must be 0.5mm (0.575mm solder mask opening) in diameter and they must all be accessible for the needles of an In-Circuit Test system (ICT). Minimum distance between test
	pad centers must be 1.00mm .
TST-002	Global fiducial markers, having circular shape, must be introduced in a proper number,
	according to IPC recommendations.
TST-003	A suitable number of test points for programing must be placed on bottom side.

7. Fabrication specifications:

FAB-001	In order to complete the manufacturing data, please define one <i>documentation</i> layer, which will contain all the PCB dimensions and clear indications of which regions(A,B,C) are rigid or	
	flexible. This is necessary for the manufacturer to clearly understand our needs.	
FAB-002	The necessary fabrication files (in extended Gerber format) must be provided.	
FAB-003	Distinct drill file for holes must be provided.	
FAB-004	Pick-and-place file for all SMT components must be generated.	
FAB-005	A list of testpoint coordinates must be created, as a text file.	
Total:	300 points	

TIE Drive Content:

Name	Content	
ANNEX_1.pdf	Shematic definition	
ANNEX_2.pdf	Mechanical drawing	
ANNEX_2_3D.pdf	3D mechanical CAD data	
ANNEX_2.idf	PCB Outline IDF format	
ANNEX_2.dxf	PCB Outline DXF format	
ANEX_3.pdf	BOM table	
ANNEX_4.pdf	Semiconductor and IC Package Thermal Metrics	
ANNEX_5	Footprints folder	

Com	ponent list	1	DESIG	N OF ELECTRONIC
TIE 2018 A WAY to turn your HOBBY into PROFES				to PROFESSION
ō.	Designator	Comment	Footprint Name	Quantity
1	C100, C101	10nF	0603	
2	C102, C103, C104, C300, C400, C401	100nF	0402	
3	C105	4.7uF	0603	
4	C301	DNP	0402	
5	C302	1pF	0402	
6	L300	1.1nH	0402	
7	L301	10nH	0402	
8	L302	10uH	0603	
9	PB300, PB301,	TIE2018_PB	See Datasheet	
10	R100, R101, R301, R302, R400, R401	10k	0402	
11	R102	3.83k	0402	
12	R300, R303	4K7	0402	
13	R600. R601. R602	100R	0402	
14	U100	TIE_2018_WPC_AFE	See Datasheet	
15	U200	DCM03	See Datasheet	
16	U300	TIE2018_SoC	See Datasheet	
17	U400	TIE2018_DIG_MIC_GYRO	QFN16(3x33mm)	
18	U600	TIE2018_RGB	PLCC4	

 Table 1 – Bill of materials: