TIE WORKSHOP: "ADVANCED TOPICS IN ELECTRONIC ASSEMBLING TECHNOLOGY"

Content

- Introduction to integrated passive devices on flexible substrates
 - Comparison with discrete chip size passives
- Design rules for integrated passive devices on flexible substrates
 - Thick film passive devices
 - Thin film passive devices
- Realization of integrated passive devices on flex. substrates, R2R
- Measurement of integrated passive devices on flexible substrates
 - Carbon based polymer resistive devices
 - Intrinsically conductive polymer devices (PEDOT:PSS)
 - Planar capacitive structures
 - Interdigitated capacitive structures
- Summary and conclusions

Uniform temperature thick film chip resistor, size 0805

Uniform temperature thick film chip resistor, size 2512

Thick Film RuO₂ Resistors on Al₂O₃

UNIVERSITATEA

Thick film resistor, screen printed on Al_2O_3 substrate, size 25.4 x 25.4 mm² c) Optical view d) IR view

d) Thick film chip resistor, size 0805, on Al₂O₃ body, c) Optical view d) IR view

Temperature Profile Thin Film NiCr on AIN

Uniform temperature profile at 60 mA current sampling of thin film NiCr chip resistor, size 4000x3000 μ m², R50 Ω / \Box , AlN substrate

Temperature Profile of Polymer Resistor on Foil

Higher temperature gradient along and across the resistive layer

Polymer Resistive Layers

b)

c) Polymer film resistive structures on foils (3.55 x 1.4 mm²): a) Carbon filled polymer on PI, b) Carbon filled polymer on PET c) PEDOT:PSS on PET, b) ATO on PET

Polymer Resistive Layers

Polymer film resistive structures on polyimide foil (PI), overview.

Design Rules Thick Film Polymer Resistive Layers

Geometry Type	Min. [µm]	Preferred [µm]	Comment
A	250 to 5200	625 to 2600	
В	125	250	
С	125	250	Interconnection conductor
D	125	250	
E	125	250	Resistor-conductor pad overlap
F	500	1000	Resistor- resistor distance
G	250	500	Pad- pad distance
W	500 to 10000	1000 to 5000	Resistor width
L	500 to 10000	1000 to 5000	Resistor length
L/W	0.3 to 10	0.5 to 5	L/W ratio

Geometry Type	Min. [µm]	Preferred [µm]	Comment
A	250 to 5200	625 to 2600	
В	25	50	
С	25	50	Interconnection conductor
D	25	50	
E	25	50	Resistor-conductor pad overlap
F	50	100	Resistor- resistor distance
G	25	50	Pad- pad distance
W	25 to 10000	50 to 5000	Resistor width
L	25 to 10000	50 to 5000	Resistor length
L/W	0.1 to 20	0.25 to 10	L/W ratio

Design Rules Capacitive Structures

Interdigital Capacitor

exceed the bottom electrode with at least 250µm

Layout of Flexible Thick Film Polymer Resistor

Scanned profile of flexible polymer resistor (L=W= 700 μ m, h=23 μ m)

Annealing at Constant Temperature vs. Electrical Pulsing with Constant Amplitudes

Resistor not

tempered DC Resistance, TLP 100ns, 500V, 2500 Pulses, Carbon Resistor on Kapton, 100 Ω/\Box , W112, n.temp. 300 $R(n)=R_{0}+R_{1}*exp(-n/n_{1}) + R_{2}*exp(-n/n_{2})$ 250 DC Resistance / Ω $R_0 = 34.0 \Omega$ $\Delta R = R_1 + R_2$ 200 R₁= 170.0 Ω n₁= 27 150 R₂= 55.0 Ω n₂= 450 100 Fi Measurement 🗕 Fit Meas 50 0 500 1000 1500 2000 2500 0 Number of Voltage Pulses at DUT /

DC- resistance versus number of applied pulses, TLP- voltage 500V, pulse width 100 ns, 2500 pulses

350 $R(t)=R_0+R_1*exp(-t/t_1) + R_2*exp(-t/t_2)$ 300 $R_0 = 75.0 \Omega$ DC Resistance / Ω $\Delta R = R_1 + R_2$ 250 R₁= 150.0 Ω t₁= 250 200 $R_2 = 70.0 \Omega$ Fit Measurement 150 t₂= 6000 100 50 - Fit 🔶 Meas 0 0 5000 10000 15000 20000 25000 30000 Time / s

DC Resistance, During Tempering, Polymer Carbon Resistor on Kapton, R 100 Ω/\Box

DC-resistance change versus time during annealing at 150°C

Laser Trimming of Polymer Resistors

Laser-Trimm cut shape of the carbon loaded poly epoxy thick film resistors (source: AEPT-Report, ESI, Feb. 2002)

Temperature Profile after Laser Trimming

Temperature distribution (IR images) before and after laser-trimming during self- heating of flexible thick film polymer resistor on PI foil, Hot spot in the center of the resistive layer before trimming. Hot spot moved from the center of the resistive layer after trimming

Cross sections of temperature distribution (IR images) before and after lasertrimming during self- heating of flexible thick film polymer resistor on PI foil, Hot spot in the center of the resistive layer before trimming. Hot spot moved from the center of the resistive layer after trimming

Laser Trimming of Thin Film Resistors

0 Pulses

Thin film NiCr-Resistance change after trimming with single laser-pulses

UNIVERSITATEA

20 Pulses

30 Pulses

DC Electrical Stress and Measurement Equipment

Shielded probe station (PA300) used for organic electronics measurements Triax-probes used for contacting polymeric devices and systems

DC Electrical Stress and Measurement Modes

Four point measurements

DC Electrical Stress and Measurement Modes

 $R_{\text{DC}},$ Kelvin measurement, Ag Nano Ink Jet, Dimatix, Size 2400x720 $\mu\text{m}^2,$ double I-sweep, 0-10m A, R_{02}

At high value resistances, no difference between 2P and 4P measurements is observed For low value resistances, significant difference between 2P and 4P measurements (high R_{contact}). Example of ink- jet printed nanosilver layer.

Polymer Carbon Based Resistors on Pl

EMFT

DC- Stress on Flexible Thick Film Resistor

DC resistance during current sweep, thick film resistor on foil, 100 Ω/\Box (permanent changes).

DC resistance during current sampling, thick film resistor on foil, 100 Ω/\Box (permanent changes).

Temperature measurements, ESL 112 resistors on PI

Temperature Distribution, ESL 112 resistors on PI

Simulation of temperature distribution during self- heating of flexible thick film polymer resistor on PI foil, showing hot spot in the center of the resistive layer.

DC- Stress on Flexible Thick Film Resistor

power dissipation in resistive layer

power dissipation in resistive layer

Resistor damage during DC stressing caused by hot spot in the center, generating two hot spots

Damage Signature on Flexible Thick Film Resistors after Pulsed Stress

Resistor burn out after successive pulsing with increased voltage

Pulsed Stress on Flex. Thick Film Polymer Resistor

DC-resistance change vs. nr. of applied pulses with constant voltage amplitude, TLP- voltage 750V, pulse width 100 ns, R 100 Ω / \Box

Polymer PEDOT:PSS Resistor on PET Foil

DC Electrical Sweep Measurement of PEDOT:PSS

DC resistance during current sweep, PEDOT:PSS resistive layer on PET foil, Rs 2.5 k Ω/\Box (reversible changes).

Optical view of cured PEDÖT:PSS polymer paste, Orgacon 3040, a) resistive layer with polymer conductor (silver), b) zoomed resistive layer showing PEDOT:PSS grains.

DC Electrical Sweep Measurement of PEDOT:PSS

DC resistance during current sampling, PEDOT:PSS resistive layer on PET foil, a) reversible changes, b) irreversible changes.

Temperature Profile of PEDOT:PSS

Temperature distribution during self- heating of PEDOT:PSS resistive layer on PET foil, hot spot in the center of the resistive layer.

DC Resistance versus Temperature

DC-Resistance vs. Temperature, PEDOT:PSS on PET, 3550 µm x 1400 µm x 5 µm

DC Electrical Stress on PEDOT:PSS layer

Layer Burnout after DC Electrical Stress

a)

b)

C)

- a) Resistor burnout during DC stressing,
- b) caused by hot spot in the center of the flexible polymer PEDOT:PSS resistor on PET foil,
- c) crack propagation through resistive layer

Polymer PEDOT:PSS Resistor on PET Foil

Layer size: 1.4x4mm printing size 1.4x3.55mm active area (2.5 □) Layer thickness: 1 µm

Polymer-paste: Clevios PH1000 EG

Zoomed optical view of PEDOT:PSS resistive layer on PET foil Optical view of PEDOT:PSS resistive layer on PET foil

DC Electrical Sweep Measurement of PEDOT:PSS

Recommended current density, max: 50 A/cm²

DC Electrical Sweep Measurement of PEDOT:PSS

DC- resistance during current sweep, 0-75mA, no permanent changes

DC- resistance during current sweep, 0-100mA, permanent changes

Temperature Distribution During Self Heating

Optical image of PEDOT:PSS layer before current stressing IR image and temperature measurement during current sampling at 100mA

DC Electrical Sampling Measurement on PEDOT:PSS

DC- resistance during multiple current samplings, 1-100mA

Layer temperature distribution during current sampling with 100mA

DC Electrical Stress on PEDOT:PSS layer

EMFT

Layer Burnout after DC Electrical Stress

Layer burn- out during current sweep

DC Resistance versus Temperature

Plate Capacitor (Copper- PVP- Carbon) on PEN

Optical view

Structure:

- Bottom electrode: Copper -Top electrode: polymer carbon -Dielectric: PVP, 1.5 μ m thick - ϵ_r : 6.4 (measured)

-C_{calc}: 37.8 pF/mm²

- -Electrode areas S:
 - 1 mm²
 - 5 mm²
 - 10 mm²
 - 50 mm²

Plate Capacitor (Copper- PVP- Carbon) on PEN

Plate Capacitor (Copper- PVP- Carbon) on PEN

El. Meas. of Thin Film Passive Devices on PI Foil

El. Meas. of Thin Film Meander Resistor on Pl

TCR of Thin Film Meander Resistor on PI- Foil

Interdigital Capacitor on PI- Foil

UNIVERSITATEA

Optical view

Structure:

- Bottom electrode: Copper
- -Top electrode: polymer carbon
- -Dielectric: PVP, 1.5 µm thick

 $-\epsilon_r$: 6.4 (measured)

-C_{calc}: 37.8 pF/mm²

-Electrode areas S:

- 1 mm²
- 5 mm²
- 10 mm²
- 50 mm²

Interdigital Capacitor on PI- Foil, Leakage Current

Parasitic Capacitance of measurement Setup

EMFT

Interdigital Capacitor on PI- Foil

54

Summary and Conclusions

- Integrated passive devices on flexible substrates were designed and realized in a Roll-to-Roll process
 - Design rules are similar to screen printed devices on rigid substrates
 - Thermal behavior of resistive passives is more critical
 - Power dissipation must be done by the resistive layer itself
 - Flexible substrates, like PET and PI have low thermal conductivities, < 1 W/m*K (Al₂O₃ 10 W/m*K; AIN 170 W/m*K)
- Electrical measurements of integrated passive devices on flexible substrates show similar results with chip size passive devices
 - Limitations because of polymer versus inorganic materials
- Adjustment of integrated passive devices with laser trimming possible

Final Conclusion

