



#### Analysis of the temperature, the pressure and the vapour density in a VPS chamber to optimize the conditions for soldering

Géczy Attila

**Budapest University of Technology and Economics** 

Dept. of Electronics Technology

2012. 04. 26. – TIE 2012, Sibiu



### VAPOUR PHASE SOLDERING





Heating PFPE fluid to obtain saturated vapour (GALDEN)
Inert chemical, not harmful
Immersion of ambient temperature PCB into the vapour
<u>CONDENSATION</u> – heat transfer

[1] R. C. Pfahl; H. H. Ammann. Method for Soldering, Fusing or Bracing, US Patent 3,866,307; Feb. 18, 1975.
[2] Wolfgang Leider, "Dampfphasenlöten: Grundlagen und praktische Anwendung" Leuze, E G; 2002.
[3] H. Leicht; A. Thumm. Today's Vapor Phase Soldering - An Optimized Reflow Technology for Lead Free Soldering, *SMTAI Conference Proceedings*, Orlando, 17-21 August 2008.



BATCH TYPE VPS OVEN

#### BASICS OF CONDENSATION SOLDERING





#### The vapour is saturated

 $T_B = T_V$ 

 $T_{S} < T_{V}$ 

 $T_B$  – the boling point of the fluid (**B**oiling)  $T_V$  – temperature of the vapour  $T_S$  – solderable sample





#### $Q = m \cdot L$

Where:

- Q is the amount of energy released during the phase change [J], this time **CONDENSATION**
- m is the mass of the condensed liquid [kg],
- L is the specific latent heat for the liquid [J/kg]



#### HEAT TRANSFER



$$\Delta Q = \alpha \cdot A \cdot \Delta T = \alpha \cdot A \cdot (T_F - T_S)$$

*α* = 230-250 for Galden (30-120 for gases)

- $\Delta Q$  is the heat input [W],
- *α* is the heat transfer coefficient [W/(m2K)],
- A is the heat transfer surface area [m2],
- Δ T is the difference in temperature between the solid surface and surrounding fluid *film*[K].



#### TEMP. CHARACTERISTIC OF A HEATED SAMPLE



$$\ln\left(\frac{T_{vapor} - T_{G}}{T_{vapor} - T_{G,0}}\right) = -\frac{\alpha \cdot A}{m \cdot c} \cdot t$$

$$T_{G}(t) = T_{Vapor} - (ae^{-t} + b)$$

- T<sub>Vapor</sub> vapour temperature
- T<sub>G</sub> temperature of the sample
- T<sub>G,0</sub> temp. of the sample at 0 time
- t time
- α heat transfer coeff.
- m mass of sample
- c specific heat capacity of the sample
- A full area of the sample
- a,b process related factors





Logarithmic plot

Wolfgang Leider: Dampfphasenlöten

GALDEN FLUID



- Novel material providing solution for CFC problems – Zero ozone depletion (not harmful for the ozone layer)
- Perfluoropolyether;
- Inert (no reactions);
- Good dielectric;
- Good wetting properties;
- Available with different boiling points;

Ether chain with strong C-F bonds m/n~50



#### MOTIVATION OF WORK



- Alternative method for reflow soldering in Electronics Technology
- Absence of thorough scientific discussion in literature:



- -> Temperature relations?
- -> Condensation processes?
- -> Identification of the Vapour
- -> Solder joints?
- Condensation heat transfer is different from conventional reflow (IR, convection)
- For identification and full process control, novel measuring methods are needed
- Complex measurements, interpolated data
- <u>Simulation</u> to investigate the key parameter relations inside the oven



#### Experimental Oven ETT





Ideal for modeling and simulation



# TEMPERATURE MEASUREMENTS





1D thermal measurements (Z)

2D thermal measurements (X,Y)

Pt500 sensor ladder

K-type thermocouple grid + interpolation



## TEMPERATURE **MEASUREMENTS**





1D thermal measurements (Z)

2D thermal measurements (X,Y)

GRID, INSIDE TANK, X DIMENSION, cm

14

16

18

20

Pt500 sensor ladder

K-type thermocouple grid + interpolation



**TIE – 2012; SIBIU** 

GRID, INSIDE TANK, Y DIMENSION, cm

12

10

8

6

8

10

12

80,80

77,88

74,96

72,04

69,12

66,20

TEMP, °C

# 3D THERMAL VISUALIZATION





- With interpolation

- Setting the same parameters for each measurement with the 2D grid

- Data shows asymmetries,

- The measurements have limitations, with the increase of sensors additional thermal capacitances are added to the process zone

SIMULATION!



# MEASURING THE PRESSURE RELATIONS BMEETT



Dynamic diff. Sensor
0.05 Pa resolution
To measure pressure change
Measuring hoses applied to the process zone



- Initial differential pressure result at a fix position (XYZ) in the oven and ambient space outside



### PRESSURE VS TEMPERATURE?



- Different sensors were applied
- Sensirion / Sensortech
- Not proper absolute pressure measurements
- Precise dynamic pressure measurements

An initial heating up period reveals that pressure is indicating saturated vapour more precisely



-Pressure measurements compared with the temperature measurement



# PREPARING FOR THE SIMULATION

EGYETEM

78













### MEASUREMENTS FOR VERIFICATION



- Calculated values compared to measurement values
- Comparing vapour pressure difference (measured) and vapour density (calculated) – same characteristic



# SIMULATION RESULTS – TEMP.



ELEKTRONIKAI TECHNOLÓGIA TANSZÉK

#### SIMULATION RESULTS – SATURATION





#### OPTIMAL PROCESS ZONE





SATURATION shells at 8, 10 and 12 minutes the parameter is the oven height

The blue/white rectangles -> optimal zone borders



SATURATION: -VAP: 20 kg/m3 -TEMP.: 180 °C

# CONCLUSIONS



- Successful measurements -> succesful verification of the simulation method
- The simulation method can define the optimal process zone inside the VPS oven
- Optimal process points to optimal control and optimal solder joints for future applications
- Future: simulation of immersed sample heating

